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The effect of spin-orbit coupling on phonon band structures can be profound for materials containing heavy
elements. We describe our implementation of density functional perturbation theory with the spin-orbit inter-
action for norm-conserving pseudopotentials. We show that the spin-orbit effect on the phonon frequency at the
X point in face-centered-cubic Pb is very large; it explains the discrepancy between calculated and experimen-
tal frequencies previously observed by Liu and Quong �Phys. Rev. B 53, R7575 �1996��. Several technical
issues �the exchange-correlation functional, the presence of semicore states, the pseudization scheme, and the
real-space range of interatomic force constants� are also investigated.
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I. INTRODUCTION

Density functional perturbation theory1–3 �DFPT� is a
widely used method to calculate the response of a system of
electrons to an external perturbation. Initially developed as
an efficient approach to the treatment of electric fields and
atomic vibrations4,5 within density functional theory �DFT�,
the method has been generalized for many other types of
perturbations such as applied strains,6,7 alchemical
perturbation8 �changing the nature of an atomic species�,
magnetic field,9,10 or to compute more involved material
properties such as superconducting and transport
coefficients,11 thermodynamic properties12 including thermal
expansion,13 or higher-order �nonlinear� responses, such as
Raman intensities14,15 or electro-optic coupling.16,17

In this paper, we present a DFPT implementation for vi-
brational properties that includes the spin-orbit �SO� interac-
tion, a relativistic effect. Formally the SO effect is always
present and gives corrections to the total energy and its de-
rivatives. Actually, the strength of the SO coupling increases
quickly with the atomic number Z: as inner-shell electrons
are pulled closer to the nucleus, their kinetic energy increases
and relativistic effects become very important. In many
cases, for light elements, these can be neglected or approxi-
mated by the scalar-relativistic terms in the Dirac equation.18

However, for specific properties, SO effects might be impor-
tant even when only light elements are present, as for
graphite.19 In second-row transition metals and heavier ele-
ments, but also for some lighter elements, the SO effect is
essential to reproduce correctly the electronic structure of
materials. Classic examples include the valence-band split-
ting of GaAs �Ref. 20� and the multiplet structure of the
f-band metals.21 For heavier elements, in general, the SO
effect becomes as important for structural and dynamical
properties as for electronic properties.

We will consider the common norm-conserving pseudo-
potential approximation, which “freezes out” the core elec-
trons, replacing their effect on the valence electrons with a
�usually nonlocal� pseudopotential operator. In this approach
the SO effect is contained in modified pseudopotentials

which depend on the spinorial state of an electron, which can
be factored out explicitly as a L ·S term.22 The application of
such a term on spinor wave function can be done on the basis
of spherical harmonics, as described in Ref. 23, or on Leg-
endre functions, as outlined in Ref. 24. In both cases, the
modifications to be applied to the DFPT treatment for
phonons �atomic displacements� are particularly simple, as
will become apparent in the present paper. Indeed the atomic
displacements do not modify the pseudopotential, but only
the structure factor governing the contribution of each
pseudopotential to total potential. We will always consider in
the following that the pseudopotential is separable, as in the
construction of Kleinman and Bylander.25

The SO coupling within DFT and DFPT, norm-
conserving pseudopotentials and plane waves, has been
implemented by some of us �2001–2002� in the ABINIT soft-
ware package �Version 3.1�.24,26 It has been used for several
phonon-based studies: thorium,27 bismuth28–30 including bis-
muth specific heat,31 and for the first full phonon band struc-
ture of uranium.32 In Ref. 30, the phonon band structure of
bismuth has been specifically investigated with and without
the SO interaction, isolating the direct effect due to the modi-
fication of the dynamical matrix at fixed crystallographic pa-
rameters from the indirect effect arising from the change in
crystallographic parameters. The inclusion of the spin-orbit
coupling modified the phonon frequencies by 10–20%
throughout the whole Brillouin zone �BZ�. Most of the modi-
fications were due to the direct effect, except for the acoustic
mode frequencies along the �−T line, for which the indirect
effect dominated.

A formalism for inclusion of SO in ultrasoft pseudopoten-
tials �USPP�33 has recently been presented by Dal Corso and
Mosca Conte.34,35 They examined the phonon band struc-
tures of Au and Pt. In both cases, the SO had an effect much
smaller than in bismuth on the order of 1%.

In the present paper, after a brief presentation of the
DFPT formalism for computing phonons �Sec. II�, we de-
scribe our formalism �Sec. III�, which is simpler than the
ultrasoft pseudopotential case. Because we have tested sev-
eral approximations within DFT �see below�, Sec. IV focuses
on the pseudopotential generation procedure. We then con-
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tinue by examining the effect of SO on the phonon band
structure of Pb �Sec. V�. Like Bi, the Pb atom has an incom-
plete 6p shell, which is strongly affected by the SO interac-
tion �6p1/2−6p3/2 splitting on the order of 1 eV�. By contrast,
Au and Pt expose a 6s incomplete shell or a filled 5d shell,
which exhibit smaller changes in bonding or dynamical ma-
trices due to the SO coupling. We will show that for Pb the
SO induces a modification of some phonon frequencies at X
by as much as 60%. In the remainder of the Brillouin zone,
the modification of the phonon frequencies is smaller than in
bismuth, but still on the order of 5%–10%, and much larger
than for Au or Pt.

We consider different technical issues, not questioned in
previous studies. We base our study mainly on pseudopoten-
tials of the Troullier and Martins36 �TM� flavor �made fully
separable, thanks to the Kleinman and Bylander
transformation25�, with some comparison with Hartwigsen-
Goedecker-Hutter �HGH� pseudopotentials22 when appropri-
ate. We have examined the effects of the exchange-
correlation �XC� functional �the generalized gradient
approximation �GGA� for the TM pseudopotential and the
local density approximation �LDA�� and of the 5d electrons
�treated as semicore states explicitly included in the self-
consistent treatment or treated as core states�.

II. DENSITY FUNCTIONAL PERTURBATION THEORY

DFPT builds on the calculation in DFT �Refs. 37 and 38�
of the total energy of a system of electrons in a given exter-
nal potential. It calculates the derivatives of the total energy
with respect to different perturbations of the potential �e.g.,
an electric field, atomic displacement, and strain�. DFPT for
phonons was reviewed comprehensively by Baroni et al.4 In
this section we summarize the elements of DFPT we will
need and introduce standard notation used in Refs. 2 and 3.

If the strength of the perturbation is characterized by a
parameter �, then the energy, potentials, and wave functions
have an expansion as a function of that parameter. The en-
ergy reads

E = E�0� + �E�1� + �2E�2� + ¯ . �1�

The forces and stresses are first-order derivatives of the en-
ergy �contained in E�1�� with respect to the appropriate per-
turbation �atomic displacement or strain�. Many experiments,
such as Raman and infrared spectroscopies, linear optics, and
elastic constants measurements, probe E�2�. The major step in
obtaining E�2� is the computation of the first-order change in
wave functions ��1�, derived either from a variational prin-
ciple for E�2� �see Ref. 39� or from a Sternheimer equation,40

Pc�H�0� − �n
�0����n

�1�� = − PcH
�1���n

�0�� , �2�

where Pc is the projector on the conduction bands, �n
�0� and

�n
�0� the ground-state eigenenergies and eigenfunctions, and

H�1� the first-order perturbed Hamiltonian. The knowledge of
��1� is also the major step in the computation of E�3�, thanks
to the so-called “2n+1,” applied to DFT.41

The perturbation often has a directional dependence, de-
scribed by a vector q� in reciprocal space. This could be the
wave vector of an electric field or of a phonon �see below�.

The most primitive approach to calculating a perturbation
�without perturbation theory� is to freeze a finite perturbation
into the system and to calculate the energies for different
values of � in order to numerically extract the derivatives.
This method is known as the frozen-phonon technique for
atomic perturbations. Calculating a frozen phonon for q� �0
requires a supercell to describe the full fluctuation of the
perturbation �which is modulated by exp�−iq�r���. As a result
calculations become unwieldy for small or unsymmetrical q�
vectors and are impossible if q� is not commensurate with the
reciprocal lattice. DFPT does not suffer from this drawback
and can be used with arbitrary q� . It must be noted that for the
specific q� =0 the calculational weight of the frozen-phonon
technique can be comparable to that of DFPT and that the
finite perturbation method then has the advantage of giving
access to higher-order responses without involved formalism
or time-consuming implementation.

The presence of the SO coupling will not modify pro-
foundly the above-mentioned equations. A first difference
will come from the replacement of scalar wave functions �n

�0�

and �n
�1� by spinor wave functions �n,�

�0� and �n,�
�1� . Then, an

additional SO term will be present in the H�0� and H�1� terms
of the Sternheimer equation,40 and finally, there will be a
direct �frozen-wave-function� contribution to the second-
order derivative of the total energy E�2�. The Hamiltonian
and energy modifications will be described in Sec. III.

In the case of phonons, one wants to calculate all the
second derivatives of E with respect to the displacements of
two atoms. This derivative gives the interatomic force con-
stants �IFC�,42 which can be understood as the change in the
force on one atom if another atom is displaced from its origi-
nal position. The IFC can be defined as

C��;��	�a,b� =
�2E

�R��
a � R��	

b , �3�

where a and b label unit cells, � and �� label atoms in the
unit cells, and � and 	 label the reduced directions in which

the atoms are displaced. The atomic positions are R� �
a and R� ��

b .
In many systems, the IFC die off slowly with the distance
between the atoms; the movement of an atom can influence
the force on an atom many cells away.43

The Fourier transform �FT� of C��;��	�a ,b� with respect
to the cell lattice positions a and b gives the dynamical ma-

trix D̃��;��	�q�� �with an additional factor of 1 /�M�M���. Di-

agonalizing D̃ gives eigenvalues, which are the square of the
phonon frequencies 
mq�

2 , and the phonon polarization vec-
tors. If q� =0 one can compare the frequencies to Raman and
infrared frequencies, and the full phonon band structure can
be obtained from different techniques, such as inelastic x-ray
scattering.

III. INCLUSION OF THE SPIN-ORBIT
INTERACTION IN DFPT

The inclusion of the full Dirac equation in an all-electron
framework is technically difficult, and most calculations are
performed at the spin-orbit coupling level, that is, they are
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accurate to order Z2�2. In contrast, as has been shown a long
time ago by Kleinman,44 in the pseudopotential framework
the Dirac equation is pseudized as a Pauli-type equation,
which is then accurate up to order �2.

A. Spin-orbit coupling in the plane-wave basis context

In a fully relativistic separable pseudopotential approach,
the spin-orbit coupling term appears only in the electron-ion
potential. In our case the potential has the form45 �for a
single atom system�

Vei�r,r�� = �
l

Vl
SR�r,r���ls�	ls� + �

l

Vl
SO�r,r��L · S�ls�	ls� ,

�4�

where �ls�	ls� is the projector on the tensor product L � S
�dimension of 2�2l+1�� of functions of a given angular mo-
mentum times the spin space. The terms Vl

SR�r ,r�� or
Vl

SO�r ,r�� are spin independent potential parts which we as-
sume separable, as in the construction of Kleinman and
Bylander25 �for sake of simplicity, we suppose only one pro-
jector per angular-momentum channel�,

Vl
x�r,r�� = f l

x�r�El
KB,xf l

x�r�� , �5�

where El
KB,x is the Kleinman-Bylander energy46 and x is ei-

ther SO or SR �for scalar relativistic�.
The HGH pseudopotentials22 are fully relativistic pseudo-

potentials directly available within this formulation. The
transformation that must be done to obtain such a formula-
tion for Troullier-Martins pseudopotentials36 is explained in
Appendix A.

In each �ls� space, the Vl
SR�r ,r�� or Vl

SO�r ,r�� and L ·S
operators commute, so the order of operations is irrelevant.
Indeed, in many texts, the projector is not explicitly written.

The standard plane-wave basis is extended to the spinor
plane-wave basis, whose elements are two component plane
waves denoted by 	G ,��. A generic matrix element takes the
forms

Vl
SR�G�,G���� = 	G,��Vl

SR�l,s�	l,s�G�,��� �6�

for the scalar-relativistic part and

Vl
SO�G�,G���� = 	G,��Vl

SOL · S�l,s�	l,s�G�,��� �7�

for the spin-orbit part.
The result for the scalar-relativistic part is well known,25

Vl
SR�G�,G���� =

4�

�
�2l + 1����El

KB,SR

� Pl�Ĝ · Ĝ��f l
SR�G�f l

SR�G�� , �8�

where Ĝ= G
�G� , G= �G�, and f l

SR�G�=
0
�f l

SR�r�jl�Gr�r2dr. jl is a
spherical Bessel function and Pl is a Legendre polynomial.
This results from the addition theorem, which states

	G�l,s�	l,s�G�� = �
m

	G�Ylm
� Ylm�G�� =

�2l + 1�
4�

Pl�Ĝ · Ĝ�� .

�9�

To achieve an analog formula for the spin-orbit term,
we first consider the vector L�G��. Using the definition
L=r�p and the identity p�G��=G��G��, we obtain
L�G��=−iG���G��G��. We therefore transform the matrix
element �Eq. �7�� in

Vl
SO�G�,G���� = − i	��S���� · G� � �G�	G�Vl

SO�l,s�	l,s�G�� .

�10�

Noting that the �G���G��� terms do not contribute, due to the
cross product with G�, we finally obtain

Vl
SO�G�,G���� = − i

4�

�
�2l + 1�El

KB,SO

� Pl��Ĝ · Ĝ��f l
SO�G�f l

SO�G��

� �	��S���� ·
G � G�

GG�
� , �11�

where Pl� is the first derivative of Pl and S the spin operator
represented by the Pauli matrices.

Although perfectly analogous in principle, the inclusion
of relativistic effects in the USPP case is much more in-
volved �see Refs. 34 and 35�. The equivalent of the
Kleinman-Bylander energies �usually called D� become ma-
trices as a function of l. The augmentation functions, overlap
matrices, and D all acquire terms due to spin-orbit interac-
tions.

B. Spin-orbit coupling and phonons

In the case of a system containing several atoms �, the
previous nonlocal matrix elements can be expressed by the
simple inclusion of structure factors in a sum over ionic po-
sitions R�. The scalar-relativistic part becomes

Vl
SR�G�,G���� =

4�

�
�2l + 1�����

�

E�,l
KB,SRPl�Ĝ · Ĝ��f�,l

SR�G�f�,l
SR�G��ei�G�-G�R�. �12�

Similarly, the spin-orbit part becomes

Vl
SO�G�,G���� = − i

4�

�
�2l + 1��

�

E�,l
KB,SOPl��Ĝ · Ĝ��f�,l

SO�G�f�,l
SO�G���	��S���� ·

G � G�

GG�
�ei�G�-G�R�. �13�
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As emphasized in Sec. II the determination of phonon frequencies involves the first-order perturbed Hamiltonian due to an
atomic displacement as well as the second derivative of E with respect to the displacements of two atoms.2,3 As spin-orbit

coupling is only involved in the separable nonlocal term of Hamiltonian, the only impacted terms are 	�n
�0��

�2Vei

�R���R��	
��n

�0�� and
�Vei

�R��
��n

�1��.
The expressions for these two terms are rather simple because atomic displacements do not modify the pseudopotential but

only the structure factors. They are directly connected with the following derivatives:

	G��
�Vl

SR

�R��

��n��
�1� � = i

4�

�
����2l + 1�E�,l

KB,SR�
G�

Pl�Ĝ · Ĝ��f�,l
SR�G�f�,l

SR�G��cn��
�1� �G���G�� − G��ei�G�−G�R�, �14�

	G��
�Vl

SO

�R��

��n��
�1� � =

4�

�
�2l + 1�E�,l

KB,SO�
G�

�	��S���� ·
G � G�

GG�
�Pl��Ĝ · Ĝ��f�,l

SO�G�f�,l
SO�G��cn��

�1� �G���G�� − G��ei�G�-G�R�, �15�

�2Eei
SR

�R�� � R�	

= �
n,l,�,��

fn	�n�
�0��

�2Vl
SR

�R�� � R�	

��n��
�0� �

= −
4�

�
�
n,l

fn�2l + 1�E�,l
KB,SR �

G�,G���

���Pl�Ĝ · Ĝ��f�,l
SR�G�f�,l

SR�G��2R��G�� − G��G	�ei�G�-G�R�cn�
�0���G�cn��

�0� �G��� ,

�16�

�2Eei
SO

�R�� � R�	

= �
n,l,�,��

fn	�n�
�0��

�2Vl
SO

�R�� � R�	

��n��
�0� �

= i
4�

�
�
n,l

fn�2l + 1�E�,l
KB,SO �

G�,G���

Pl��Ĝ · Ĝ��f�,l
SO�G�f�,l

SO�G���	��S���� ·
G � G�

GG�
�

�2R��G�� − G��G	�ei�G�-G�R�cn�
�0���G�cn��

�0� �G��� . �17�

��n�
�0�� ���n�

�1��� is a spinorial component of wave function �n
�0�

�first-order wave function �n
�1��. fn is the occupation number

and cn�
�0��G� and cn�

�1��G� are plane-wave coefficients.

IV. CONSTRUCTION OF THE PSEUDOPOTENTIALS

A number of different variables must be considered in the
construction of our TM pseudopotential. Linear response
quantities are more delicate to access and converge than the
ground state, and careful consideration is needed; we must
choose which electrons will be treated explicitly as valence
in the self-consistent run, which level of relativistic approxi-
mation we will use �scalar relativistic or full spin orbit�, and
which XC functional will be employed �the LDA �Ref. 38� or
Perdew-Burke-Ernzerhof �PBE�-GGA �Ref. 47� in our
study�. Our main result, namely, the noticeable effect of SO
on phonon frequencies, especially at the X point �see Sec. V�,
is unaffected by these despite some fluctuations.

We have generated eight TM pseudopotentials: with and
without SO, with and without semicore 5d electrons, and
using LDA or GGA. The pseudopotential matching radius
was set to 1.7 bohr in all cases. For the ground-state proper-
ties, the semicore electrons have little effect, which could
have been expected in this homogeneous system. The LDA

TM potential strongly underestimates the experimental vol-
ume �109 Å3 instead of 121 Å3�. Worse, it predicts the
wrong phase ordering: the diamond phase is lower in energy
than fcc. The SO interaction does not affect the structure
strongly, but we will see below that the electronic and vibra-
tional properties change substantially. Comparison with
structural and vibrational data shows that the best result is
obtained with the most complete pseudopotential: GGA with
semicore and with SO interaction.

The relaxed lattice parameter with the GGA SO 5d
pseudopotential is 4.958 Å, in excellent agreement with the
experimental value of 4.951 Å. The presence of semicore
states necessitates a fairly high kinetic-energy cutoff of 30
Ha, which we use for the other TM potentials as well. We
have performed all phonon band-structure calculations at the
correspondingly relaxed lattice parameters, given in Table I.
The largest difference is between LDA and GGA for the TM
cases. The SO coupling has almost no effect on the volume.
The inclusion of semicore states has an effect for the LDA
case.

To verify whether the LDA approximation itself is in
question, we have also tested another type of pseudopotential
which incorporates SO interaction, of the HGH �Ref. 22�
flavor, which converges with a plane-wave cutoff of 16 Ha.
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The HGH published parametrization has no semicore elec-
trons, but we have seen above that the semicore has a rather
small effect, and the same is true for the phonons below. The
HGH LDA pseudopotential predicts the correct ordering of
the diamond and fcc phases and yields a better lattice param-
eter of 4.84 Å �volume of 113 Å3�. The worse quality of the
LDA TM potential is thus not due exclusively to the LDA
but to the combination of the TM scheme with LDA volume
underestimation. It is the absence of semicore electrons
which allows for convergence with a lower plane-wave cut-
off than the TM pseudopotential. In the following we will
focus mainly on the reference GGA TM pseudopotential with
semicore electrons.

V. EFFECT OF SPIN ORBIT ON PHONONS IN fcc LEAD

The phonon band structure of lead was calculated as one
of the first applications of DFPT to metals and broadly gave
good agreement11,49 except at the X point. It was suggested in
Ref. 49 that the discrepancies could be due to the lack of
spin-orbit coupling. This is indeed the case: in Fig. 1 we
show the phonon-dispersion curves for fcc Pb with and with-
out the spin-orbit effect compared to experiment. The pho-
non modes at many q� change appreciably with the SO effect,
but at the X point the effect is dramatic, and the X transverse
frequency softens by more than 10 cm−1. As a whole the
lowest branch is the most affected. Also the highest branch is
largely affected along the �−K and �−L directions.

The Fermi surface �FS� of lead is quite complicated, with
small pockets of electrons and holes, and it is necessary
to sample the electronic and vibrational degrees of freedom

in the Brillouin zone with at least a 12�12�12
Monkhorst-Pack50 grid �72 q points in the irreducible Bril-
louin zone �IBZ��. This dense grid was necessary to resolve
the Kohn anomalies and nonsinusoidal behavior of the pho-
non bands. We examined this effect, in the case of the HGH
�Ref. 22� pseudopotentials, using even better Monkhorst
pack grids, up to a 32�32�32 grid �897 k points in the
IBZ� for the electronic degrees of freedom. In this case we
relied on a somewhat coarser 8�8�8 BZ sampling �29 q
points in the IBZ� for the vibrational degrees of freedom,
thanks to the approximation scheme presented in Appendix
B, using a cutoff of the IFC in real space. These details of the
scheme are presented because it is simple and may be of
interest for other implementations of DFT phonon calcula-
tions �the cutoff was only used for the comparison calcula-
tions using the HGH pseudopotential�. It remains, however,
quite a severe approximation �neglecting slowly converging
long-range IFC�, which must be used with care. In this way,
reducing the sampling of vibrational degrees of freedom
from 12�12�12 to 8�8�8 does not affect the precision
of the phonon frequencies.

The phonon frequencies calculated with the different
pseudopotentials are compared in Table II for selected high-
symmetry points. The effect of the SO interaction is remark-
ably strong, almost halving the frequencies at the X point,
and softening the transverse modes at K and L as well. The
longitudinal modes are much less sensitive to the SO effect.

As we explained in Ref. 51 for monoatomic wires of Pb,
the SO interaction has the effect of shifting part of the Fermi
surface to a k� point which gives a Kohn anomaly52 at 2kF
=X. The electronic effect is similar but more subtle in three-
dimensional �3D� bulk Pb, as can be seen from the compari-

TABLE I. Comparison of lattice parameters in LDA and GGA, with and without the SO interaction and
with and without the semicore �SC� 5d electrons treated as valence electrons. In the first column of numerical
values the reference is presented �in Å�: a GGA Troullier-Martins pseudopotential �Ref. 36� with semicore
electrons. The other columns give the percent change with respect to this reference. The HGH column refers
to HGH pseudopotentials, with LDA and no semicore electrons.

Reference, Å
�GGA SC SO� GGA SC LDA SC GGA LDA HGH

4.958 SO 0% −3.4% −0.2% −4.8% −2.3%

No SO −0.2% −3.5% −0.3% −4.8% −2.4%

Γ X K Γ L
0

20

40

60

80

Fr
eq

ue
nc

y
(c

m
-1

)

FIG. 1. The phonon band
structure of lead, with �solid� and
without �dashed� spin-orbit inter-
action. The circles are experimen-
tal data from Ref. 48. Note the
dramatic effect of SO for the low-
est branch around X and K. Side
panel: phonon density of states
with �solid line� and without
�dashed� SO coupling.
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son of the electronic band structures with and without SO in
Fig. 2. The change in the bands at the Fermi level is quite
small, but around the W point the bands nearest to EF are
affected. Doubling the W k point brings us to a wave vector
which folds back to X.

In Table II we also compare phonon frequencies for the
potential with and without semicore d electrons and for dif-
ferent XC approximations. The results depend more on the
inclusion of the SO effect than on the XC method. The pres-
ence of the d states does not modify the results strongly, and
in particular the LDA HGH frequencies are very close to the
GGA TM ones. Overall, we can say that potentials which
produce good ground-state structural data also give good vi-
brational properties, and in any case, the effect of SO, as
deduced from the GGA TM case with semicore states, is
confirmed, despite some fluctuations, which are to be ex-

pected from the differing constructions of the norm-
conserving pseudopotentials.

VI. CONCLUSIONS

We have laid to rest an important discrepancy in the
phonons of Pb, which had been recognized over ten years
ago.49 The phonon band structure of face-centered-cubic lead
is profoundly affected by the inclusion of the spin-orbit in-
teraction.

We have shown how this interaction can be incorporated
into norm-conserving pseudopotential based DFPT calcula-
tions of dynamical matrices and phonon frequencies. The
nature of the pseudopotential also affects the phonon band
structure, but to a lesser extent, through the construction
scheme, the approximation used for the exchange-correlation
functional, and the relaxed lattice parameter. The presence or
the absence of the 5d states in the set of valence electrons
does not alter strongly the electronic or vibrational properties
of pure lead; this was expected as the d electrons are quite
inert, 4.6 eV below the s bands, and the d shell is always
filled in elemental Pb.

The method exposed here has opened the possibility of
accurately simulating the vibrational properties of heavy at-
oms, including d and f row elements, as witnessed by several
previous phonon band-structure calculations including SO
interaction. The further inclusion of SO with strong correla-
tion methods, such as LDA+U, in phonon calculations, must
be considered in order to complete the accurate description
of heavier elements. Some work in this direction has begun53

but much remains to be done, in particular in application to
efficient DFPT methods.

Finally, the somewhat fluctuating behavior and quality
shown for different combinations of pseudopotential scheme
and XC approximation combinations call for more precise

TABLE II. Comparison of phonon frequencies with different pseudopotentials, with and without the SO interaction. Columns and
notation as in Table I. The GGA reference is presented �in cm−1�. The LDA/GGA difference is relatively constant, and the effect of spin-orbit
coupling is very strong, particularly for the TA mode at X.

Phonon mode
Reference, cm−1

�GGA SC SO�
Spin-orbit
treatment

GGA SC
relative diff.

LDA SC
relative diff.

GGA
relative diff.

LDA
relative diff.

HGH
relative diff.

X TA 23.6 SO 0% 6% 26% 23% 19%

No SO 68% 74% 84% 73% 65%

X LA 62.9 SO 0% 18% −7% 7% 1%

No SO −1% 14% 7% 15% 6%

K TA 39.3 SO 0% 7% 7% 16% 1%

No SO 22% 29% 29% 32% 5%

K LA 67.3 SO 0% 12% −4% 6% −3%

No SO −3% 8% 4% 11% −6%

L TA 24.5 SO 0% 8% 23% 33% 22%

No SO 33% 37% 42% 41% 30%

K LA 67.3 SO 0% 12% −4% 6% −3%

No SO −3% 8% 4% 11% −6%

L LA 73.6 SO 0% 16% −6% 9% −6%

No SO −4% 10% 1% 13% 4%

Γ X K Γ L X W L
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FIG. 2. The electronic band structure of lead �in eV�, with
�solid� and without �dashed� spin-orbit interaction. The Fermi level
is at 0.
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methodologies to calculate phonon frequencies. For the ul-
trasoft scheme, the implementation of SO within DFPT has
been published.35 The DFPT implementation of the projector
augmented wave �PAW� formalism54,55 should be comple-
mented by taking into account SO effects.
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APPENDIX A: DESCRIPTION OF THE TREATMENT OF
SPIN-ORBIT COUPLING IN THE CASE OF
TROULLIER-MARTINS PSEUDOPOTENTIALS

In the case of norm-conserving Troullier-Martins
pseudopotentials,36 the nonlocal pseudopotential can be
written56 as

VNL = �
l

�ls���vl
ion�	vl

ion��	ls�

+ �
l

�ls���vl
ion�	vl

SO� + �vl
SO�	vl

ion��L · S	ls�

+ �
l

�ls���vl
SO��1

4
l�l + 1� −

1

2
L · S�	vl

SO��	ls�

�A1�

with the same notations as in Ref. 56 �we assume that the
Kleinman-Bylander energy factors have been absorbed in the
definition of vl

ion and vl
SO�,

vl
ion =

1

�2l + 1�
��l + 1�vl,l+1/2 + �l�vl,l−1/2� , �A2�

vl
SO =

2

�2l + 1�
��vl,l+1/2 − vl,l−1/2�� , �A3�

where vl,l+1/2 and vl,l−1/2 are the lj components of a pseudo-
potential coming from the resolution of the Dirac equation.

This can be rewritten as

VNL = �
l

�ls���vl
ion�	vl

ion� + �vl
SO�

1

4
l�l + 1�	vl

SO��	ls� + �
l

	ls�

���vl
ion�	vl

SO� + �vl
SO�	vl

ion� −
1

2
�vl

SO�	vl
SO��L · S	ls� .

�A4�

Defining the quantities,

Q1 = 1 0

0
1

4
l�l + 1� �Q2 = 0 1

1 −
1

2
�

and

Vl
0 = ��vl

ion�
�vl

so�
� ,

we have

�A5�

The Q1 matrix being diagonal, we can use a
Kleinman-Bylander25 approach with two projectors: the first
one is associated with an effective Kleinman-Bylander en-
ergy El,1

KB,SR=1 and a semilocal potential vl
ion. The second one

is associated with a Kleinman-Bylander energy El,2
KB,SR

= 1
4 l�l+1� and a semilocal potential vl

SO.
The Q2 matrix can be diagonalized. Its eigenvalues are

− 1
4 �1+�17� and 1

4 �−1+�17� and its eigenvectors, respec-
tively,

v1 = 1

4
�− 1 + �17�

1
�, v2 = 1

4
�1 + �17�

1
� .

In this eigenbasis, we have

Vl
0 = −

2
�17

�vl
ion −

�1 + �17�
4

vl
SO�

2
�17

�vl
ion +

��17 − 1�
4

vl
SO� . �

We can then use again a Kleinman-Bylander25 approach with
two projectors: the first one is associated with a Kleinman-
Bylander energy El,1

KB,SO=−
�17
2 and a semilocal potential

− 2
�17

�vl
ion− �1+�17�

4 vl
SO�. The second one is associated with a

Kleinman-Bylander energy El,2
KB,SO=

�17
2 and a semilocal po-

tential 2
�17

�vl
ion+ ��17−1�

4 vl
SO�.

APPENDIX B: CUTOFF SCHEME FOR INTERATOMIC
FORCE CONSTANTS

The Fourier interpolation of phonon bands in Pb is com-
plicated by the softenings at several points in the BZ. This
gives the bands nonsinusoidal behavior, and higher harmonic
contributions appear, i.e., larger long-ranged interatomic
force constants. As the longest-ranged IFC which are calcu-
lated are not small, by Fourier transforming back we acquire
artificial wiggles in the interpolated band structure, in par-
ticular near the � point. This can be seen in the thin dashed
line of Fig. 3, which represents the normally interpolated
phonon bands. In this case we have employed the LDA HGH
pseudopotential with SO, which compares well with the full
GGA TM data with semicore d electrons �thick solid line�.
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This feature of the Fourier transform is analogous to aliasing
errors in normal transform theory. The normal solution to
this kind of problem is to increase the grid �in our case the
density of q points in the irreducible Brillouin zone� until the

longest-range IFC decay properly. However, this would en-
tail much heavier calculations.

Using a cutoff in real space for the IFC �neglecting those
beyond a certain distance� eliminates the low −q oscillations
and gives the thick dot-dashed lines in Fig. 3. As can be seen
in the figure, the IFC which are neglected using the cutoff
contribute very little to the bulk of the band structure. In this
way we have an approximation which gives a good quality
band structure without the aliasing effects. Obviously it must
be known in advance that the “wiggles” are aliasing and that
physical negative modes are not being eliminated.

The cutoff also smooths some of the physical features in
the rest of the Brillouin zone, so it must be the subject of a
convergence study, at the same time as the sampling grid. We
emphasize that relying on a cutoff is not the same as using a
coarser BZ sampling: all the q points contribute to improve
the convergence of all of the IFC, including the short-ranged
ones. Converging the grid density will of course improve the
phonon band structure near points that are calculated explic-
itly, but a controlled use of the IFC cutoff gives similar pre-
cision with many fewer wave vectors. Here controlled means
ensuring that the negative modes which are eliminated are
indeed spurious. An alternative method, intermediate in com-
putational weight between full convergence and our cutoff,
has been proposed by Gaál-Nagy57 adding wave vectors se-
lectively in regions where instabilities appear.
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